Abiogenesis - Origins of Life on Earth
Abiogenesis or biopoiesis or OoL (Origins of Life), is the natural process of life arising from non-living matter, such as simple organic compounds. It is thought to have occurred on Earth between 3.8 and 4.1 billion years ago. Abiogenesis is studied through a combination of laboratory experiments and extrapolation from the characteristics of modern organisms, and aims to determine how pre-life chemical reactions gave rise to life on Earth.
The study of abiogenesis involves geophysical, chemical, and biological considerations, with more recent approaches attempting a synthesis of all three. Many approaches investigate how self-replicating molecules, or their components, came into existence. It is generally thought that current life on Earth is descended from an RNA world, although RNA-based life may not have been the first life to have existed. The classic Miller–Urey experiment and similar research demonstrated that most amino acids, the basic chemical constituents of the proteins used in all living organisms, can be synthesized from inorganic compounds under conditions intended to replicate those of the early Earth. Various external sources of energy that may have triggered these reactions have been proposed, including lightning and radiation. Other approaches ("metabolism-first" hypotheses) focus on understanding how catalysis in chemical systems on the early Earth might have provided the precursor molecules necessary for self-replication. Complex organic molecules have been found in the Solar System and in interstellar space, and these molecules may have provided starting material for the development of life on Earth.
The panspermia hypothesis alternatively suggests that microscopic life was distributed to the early Earth by meteoroids, asteroids and other small Solar System bodies and that life may exist throughout the Universe. It is speculated that the biochemistry of life may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the age of the universe was only 10 to 17 million years. The panspermia hypothesis therefore answers questions of where, not how, life came to be; it only postulates that life may have originated in a locale outside the Earth.
Nonetheless, Earth remains the only place in the Universe known to harbour life, and fossil evidence from the Earth supplies most studies of abiogenesis. The age of the Earth is about 4.54 billion years; the earliest undisputed evidence of life on Earth dates from at least 3.5 billion years ago, and possibly as early as the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean Eon. Microbial mat fossils have been found in 3.48 billion-year-old sandstone in Western Australia. Other early physical evidence of biogenic substances includes graphite and possibly stromatolites discovered in 3.7 billion-year-old metasedimentary rocks in southwestern Greenland, as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia. According to a scientist who commented on the study, "If life arose relatively quickly on Earth … then it could be common in the universe."
Explanation from: https://en.wikipedia.org/wiki/Abiogenesis
0 Response to "Abiogenesis - Origins of Life on Earth"
Post a Comment